Liste des publications

Nombre total de résultats : 541
Pertinence Titre A-Z Plus récents Plus anciens
10 25 50
Année de publication
et

Study of thin Films of Nickel Oxide (NiO) Deposited bythe Spray Pyrolysis Method

Antar BOUHANK, Youcef. Bellal, Hacene Serrar  (2018)
Publication

Abstract: In this work, thin films of nickel oxide (NiO) were deposited by a simple and inexpensive technique, which is spraypyrolysis on ordinary glass substrates heated to a fixed temperature of 500 °C, from a solution containing nickel nitrate hexahydrateas a precursor dissolved in distilled water with deferent values of concentrations. The NiO thin films obtained were characterized todetermine the structure with X-ray diffraction technique (XRD), the absorption domain (UV-Visible Spectroscopy), and the surfacemorphology (SEM). The X-ray diffraction patterns confirm the presence of NiO phase with preferential orientation along the (111)direction. The optical gap for nickel oxide calculated with a concentration of 0.1 M from the measurement of optical absorption is 3.6eV, which is quite comparable to the value of the ratio. Voir les détails

Mots clés : NiO, Thin films, Spray pyrolysis

Analytical Modeling of Dual-Junction Tandem Solar Cells Based on an InGaP/GaAs Heterojunction Stacked on a Ge Substrate

F. Bouzid, F. Pezzimenti, L. Dehimi, F.G. Della Corte, M. HADJAB, and A. HADJ LARBI  (2019)
Publication

An analytical model is used to describe the electrical characteristics of a dual?junction tandem solar cell performing with a conversion efficiency of 32.56%under air mass 1.5 global (AM1.5G) spectrum. The tandem structure consistsof a thin heterojunction top cell made of indium gallium phosphide (InGaP) ongallium arsenide (GaAs), mechanically stacked on a relatively thick germa?nium (Ge) substrate, which acts as bottom cell. In order to obtain the bestperformance of such a structure, we simulate for both the upper and lowersub-cell the current density–voltage, power density–voltage, and spectral re?sponse behaviors, taking into account the doping-dependent transportparameters and a wide range of minority carrier surface recombinationvelocities. For the proposed tandem cell, our calculations predict optimalphotovoltaic parameters, namely the short-circuit current density (Jsc), open?circuit voltage (Voc), maximum power density (Pmax), and fill factor (FF) areJsc = 28.25 mA/cm2, Voc = 1.24 V, Pmax = 31.64 mW/cm2, and FF = 89.95%,respectively. The present study could prove useful in supporting the design ofhigh efficiency dual junction structures by investigating the role of differentmaterials and physical parameters. Voir les détails

Mots clés : Analytical modeling, tandem solar cell, Spectral response, conversion efficiency

Quantitative and qualitative analyses of intermolecular interactions in neutral/deprotonated aspirin@β-CD inclusion complexes: QTAIM and NBO analyses

Belgacem BEZZINA, Rayenne Djemil, Nadjia Bensouilah  (2019)
Publication

Most of the researches in supramolecular chemistry area are focused on the conventional hydrogen bonds without taking into account unconventional intermolecular interactions. The nature and strength of the conventional and unconventional interactions in inclusion complexes formed between neutral aspirin (ASA) and its deprotonated form (ASA−) with β-cyclodextrin (β-CD) have been studied. It was conducted through combining atoms in molecules (AIM) theoretical criteria suggested by Koch and Popelier and natural bond orbital (NBO) analyses by means of dispersion-corrected density functional theory (DFT-D3) with the functional B3LYP using cc-pvdz basis set in the gas phase. We have found fve intermolecular closedshell interaction groups responsible for neutral ASA:β-CD and deprotonated ASA−:β-CD inclusion complexes stability: One is conventional O–H···O bond group. The four C–H···O, C–H···C, O–H···H–C and C–H···H–C groups are nonconventional. Also, with respect to the Koch and Popelier criteria, some of them present the properties of a hydrogen bond, while others do not. The non-covalent interaction energies are calculated using Espinosa approach. Finally, according to the AIM and NBO analyses, the topological parameters (electron density ρband its Laplacian ∇2ρb), estimated interaction energies (Eint), and the stabilization energy E(2)of both complexes were correlated with the intermolecular bond lengths Voir les détails

Mots clés : β-Cyclodextrin, Aspirin, Inclusion complex, DFT-D3, QTAIM, NBO

Dissimilar Welding between 2205 Duplex Stainless Steel and API X52High Strength Low Alloy Steel

B. BELKESSA, D. Miroud, B. Cheniti, N. OUALI, M. Hakem, M. Djama  (2018)
Publication

This work purposes to investigate the microstructure and the mechanical behavior ofdissimilar metals weld between 2205 duplex stainless steel (UNS 31803) and high strength lowalloy steel API X52. The joining was produced by shielded metal arc welding process using twodifferent filler metals, the duplex E2209 and austenitic E309 grade.The microstructures of the dissimilar welded joints have been investigated by optical microscopy,scanning electron microscopy and energy-dispersive spectroscopy (EDS). The EDS analysisperformed at the API X52/weld metal interface showed an evident gradient of Cr and Ni betweenfusion and type II boundaries, where the highest hardness value was recorded. Voir les détails

Mots clés : Dissimilar metals welding; 2205 duplex stainless steel; API X52 HSLA steel; Heataffected zone

Evolution of Widmandstaïtten structure in welding joints

M. Hakem, R. RABAH OTMANI  (2005)
Publication

The operation of welding induces a metallurgical multitude of phenomenon owing to the fact that it covers high fields' energetic thus causing important variations of the mechanical properties and microstructural of materials. The multipass welding of a HSLA steel strong thickness gives place to a variation of the microstructure of a layer to another. The thermal cycle supports the appearance of a known structure under the name of "structure of widmanstätten". The latter is supported by high heating temperatures and a fast cooling; it often germinates in the form of slat on the austenitic grain boundaries, known like ferrite of widmanstätten. But it can germinate in the form of needles in the grains on the impurities or on the precipitates, it is acicular ferrite. Impact strength and hardness tests were done on the melted zone after welding and heat treatment.The microstructural evolution of each layer influences the entire welded joint, conferring these final mechanical properties to him. Voir les détails

Mots clés : heat treatment, HSLA steels, welding, Widmanstätten structure

Mechanism for phosphorus deactivation in silicon-based Schottkydiodes submitted to MW-ECR hydrogen plasma

D.BELFENNACHE, D.MADI, N.BRIHI, M.S.Aida, M.A.SAEED  (2018)
Publication

Current work reveals the deactivation mechanism of phosphorus in silicon-based Schottky diodes. Microwave plasma power(P) was fixed at 650 W to observe the variation in different operational parameters of diodes such as initial phosphorusconcentration, flux and hydrogenation temperature (TMWH) and process time (t). The analysis of variation in concentrationof phosphorus by hydrogenation has been carried out by capacitance–voltage (C–V) measurements to monitor the dopingactivation/deactivation. The results clearly show that the atomic species H+H is dominant in the reactors MW-ECR plasma.Therefore, the rates and depth of neutralization were obtained in the low phosphorus-doped silicon sample. The H becomesH0 and prefers an interaction with another H0 instead of gaining an electron to become a negative ion. The hydrogenationtemperature study indicates that the deactivation rate of phosphorus is achieved in a complex manner. Indeed, as the hydrogenationtemperatureincreases,deactivationof phosphorus also increasestill saturationat 250 °C.Athigher temperature,lowor evenno phosphorus–hydrogen complexexistsdue totheirthermaldissociation. The same behaviorwasconfirmedbylonghydrogenation. Voir les détails

Mots clés : MW-ECR plasma, Hydrogenation, phosphorus deactivation, C–V measurement

Effect of microstructure and precipitation phenomena on the mechanical behavior of AA6061-T6 aluminum alloy weld.

M. Hakem, S. Lebaili, S. Mathieu, D. Miroud, A. LEBAILI, B. Cheniti  (2019)
Publication

In the present study, the effect of microstructure and precipitation phenomena on the micro hardness, tensile strength, impacttoughness, and electrochemical behavior of tungsten inert gas (TIG)-welded AA6061-T6 aluminum alloy are investigated. Themicrostructure features showed mainly the grains of aluminum solid solution with the presence of some precipitates at the grainboundaries. Scanning electron microscope micrographs exhibited the presence of Fe-based intermetallic and B-equilibriumprecipitates throughout a-Al grains. In the heat-affected zone (HAZ), the dissolution, over-aged, and coalescence of precipitatesare observed; their hardening effects disappear and a decrease in strength and hardness are noticed. The fracture toughness valuesof each zone at different temperatures using Charpy V-notch test remained constant where the HAZ presents the highest absorbedenergy. However, the temperature did not have a significant effect on the absorbed energy for each zone. In addition, the fracturedsurface of base metal (BM) and HAZ are characterized by dimple-like structure and they are larger in the HAZ. The electrochemicalbehavior of each zone of the weld evaluated in NaCl + H2O2 solution revealed that the corrosion current density of BMand HAZ is lower than that of molten zone (MZ), which displays high corrosion current density in this electrolyte and would befastest to corrode. Voir les détails

Mots clés : Aluminum alloys, TIG welding, precipitates, microstructure, Fractography, Electrochemical behavior

Poly Chlorure de Vinyle (PVC) Plastifié par des Mélanges des Plastifiants d’origineBiosourcés : Synthèse et Caractérisation

Boussaha BOUCHOUL, Mohamed Tahar BENANIBA  (2016)
Publication

L’huile de tournesol époxydée (HTE) avec un indice d’oxyrane de 4,5 a été synthétisée à partir de l’huile de tournesol vierge et l’eau oxygénée (H2O2) en présence de l’acide formique. L’HTE est utilisée avec le di esters isosorbide (DEI) comme un système plastifiant biosourcé dans le PVC en combinaison avec un plastifiant classique soit le di-éthyle-2-hexyle phthalates (DEHP).Après fabrication des films (0,5 mm d’épaisseurs) de différents pourcentages des plastifiants dans un mélangeur à deux cylindres, on a réalisé les essais de la migration et d’excudation des plastifiants des formulations obtenues. La migration des plastifiants biosourcés (DEI ou HTE) en combinaison avec le DEHP est suivie par les tests de volatilité, d’extraction et de lessivage. Les pertes des masses des formulations plastifiées réalisées obtenues par les différents modes de caractérisation à savoir: la volatilité, l’extraction dans l’eau distillée et dans la gazoline et le lessivage dépendent de la pression devapeur, de la masse moléculaire, de la solubilité, de la compatibilité et de la structure chimique du plastifiant. Voir les détails

Mots clés : PVC, Biosourcé, Epoxydation, plastifiants

Thermal and mechanical properties of bio-basedplasticizers mixtures on poly (vinyl chloride)

Boussaha BOUCHOUL, Mohamed Tahar BENANIBA, Valérie MASSARDIER  (2017)
Publication

The use of mixtures of nontoxic and biodegradable plasticizers coming from natural resources is a good way to replaceconventional phthalates plasticizers. In this study, two secondary plasticizers of epoxidized sunflower oil (ESO)and epoxidized sunflower oil methyl ester (ESOME) were synthesized and have been used with two commerciallyavailable biobased plasticizers; isosorbide diesters (ISB) and acetyl tributyl citrate (ATBC) in order to produce flexiblePVC. Different mixtures of these plasticizers have been introduced in PVC formulations. Thermal, mechanical andmorphological properties have been studied by using discoloration, thermogravimetric analysis (TGA), differentialscanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), tensile - strain and scanning electronmicroscopy (SEM). Studies have shown that PVC plasticization and stabilization were improved by addition ofplasticizers blends containing ISB, ATBC, ESO and ESOME. An increase in the content of ESO or ESOME improvedthermal and mechanical properties, whereas ESOME/ATBC formulations exhibited the best properties. Voir les détails

Mots clés : PVC, epoxidized sunflower oil, epoxidized sunflower oil methyl ester, isosorbide diesters, acetyl tributyl citrate.

Study of the effect burnishing on superficial hardness and hardening of S355JR steel using experimental planning

Mounira Bourebia, abdeljalille bouri, Hamid Hamadache, Sihem ACHOURI, lakheder laouer, amel gherbi, Oualid GHELLOUDJ  (2019)
Publication

Surface hardness plays an important role in lifetime of a mechanical piece subjected to friction and wear. Indeed, the hardness can be improved by superficial plastic deformation processes (SDP), such as mechanical surface treatment "MST", in particular the ball burnishing. However, the treatment result of is conditioned by mastery of operation thus ensuring treated piece good mechanical and geometric properties. Experimental work was carried out by applying the ball burnishing process on steel tensile specimens S355JR, in order to observe the influence of treatment parameters regime on surface hardness ‘Hv’ and the effect of latter on tensile behavior of this steel. Two parameters of regime were considered namely: burnishing force "Py" and number of passes "i". The relationship between these parameters and microhardness measured at "Hv" surface has been highlighting using factorial plans 22. Moreover a mathematical model has been obtained allowing prediction of response (Hv) as well as optimization of parameters of treatment regime. The experimental results showed that for surface hardness Hv it is possible to reach a 45% improvement rate for a burnishing force py = 20 Kgf and a number of passages i = 3 for this material. Regarding behavior of material during tensile test, for a low burnishing force (py = 10N) and a number of passes (i = 5), the section further weakening (S = 4.14), proof than ductility of material has decreased. Voir les détails

Mots clés : Surface hardness, factorial designs, ball burnishing, Mathematical model, tensile behaviour