Optimal Tuning of Fractional Order Proportional-Integral-Derivative Controller for WireFeeder System Using Ant Colony Optimization
Type : Publication
Auteur(s) : , , , , ,
Année : 2020
Domaine : Electrotechnique
Revue : Journal Européen des Systèmes Automatisés
Résumé en PDF :
Fulltext en PDF :
Mots clés : gas metal arc welding process, wire-feeder system, fractional-order-proportionalintegral-derivative controller, ant colony optimization algorithm
Auteur(s) : , , , , ,
Année : 2020
Domaine : Electrotechnique
Revue : Journal Européen des Systèmes Automatisés
Résumé en PDF :
Fulltext en PDF :
Mots clés : gas metal arc welding process, wire-feeder system, fractional-order-proportionalintegral-derivative controller, ant colony optimization algorithm
Résumé :
The goal of this work is to present a robust optimal control approach, in order to improve the speed error-tracking and control capability of a permanent magnet DC Motor (PMDC)driven wire-feeder systems (WFSs) of gas metal arc welding (GMAW) process. The proposed speed controller employs an optimized fractional-order proportional + integral+ derivative (FOPID) controller that serves to eliminate oscillations, overshoots, undershoots and steady state fluctuations of the PMDC motor and makes the wire-feeder unit (WFU) has fast and stable starting process as well as excellent dynamic characteristics. The fixed controller parameters are meta-heuristically selected via an ant colony optimization (ACO) algorithm. Numerical simulations are performed in Matlab/Simulink environment and the performance of the proposed ACO-FOPID controller is validated. The simulation results clearly demonstrate the significantimprovement rendered by the proposed approach in the wire-feeder system's reference tracking performance, torque disturbance rejection capability, and transient recovery time.