Characteristics of Al-doped TiO$_2$ thin films grown by pulsed laser deposition

Faouzi Hanini*, Yacine Bouachiba, Fouad Kermiche, Adel Taibouche and Abderrahmane Bouabellou

Laboratoire Couches Minces – Interfaces, Université Mentouri Constantine, 25000, Algérie
E-mail: haninifaouzi@gmail.com; physique99@gmail.com; fouadker@yahoo.fr; adelphm@gmail.com; a_bouabellou@yahoo.fr
*Corresponding author

Tahar Kerdja
Centre de Développement des Techniques Avancées, Baba-Hassen, Alger 16000, Algérie
E-mail: tkerdja@ctda.dz

Kamel Boukhedaddaden
Groupe d’Etudes de la Matière Condensée, Université de Versailles Saint-Quentin, 45 Av. des Etats Unis 78035, Versailles
E-mail: kbo@physique.uvsq.fr

Abstract: Al-doped TiO$_2$ (TiO$_2$:Al) thin films were deposited at 450°C onto glass substrates using pulsed laser deposition method. X-rays diffraction spectra showed that the obtained films are polycrystalline of anatase structure with preferential orientation of (101) direction. AFM images, nanoparticles size and surface roughness mean square values showed that the surfaces of TiO$_2$:Al films are smoother than that of undoped TiO$_2$ films. A blue shift in the absorption edge of TiO$_2$ with increasing Al concentration in the film is noteworthy as it leads to increase in the width of the optical transmission. The optical waveguiding performances of the TiO$_2$:Al films were demonstrated by using the m-lines spectroscopy technique and the results were correlated to the structural properties. Spectroscopic ellipsometry was used to extract the optical constants of the films. The determined band gap of undoped and Al doped films varies from 3.43 to 3.61 eV, which is in accordance to Burstein-Moss shift.

Keywords: Al-doped TiO$_2$; structure; morphology; optical properties; waveguide; nanoparticles.