Kinetics study and neural network modeling of degradation of Naphtol Blue Black by electro-Fenton process: effects of anions, metal ions, and organic compound

Chafia Bouaslaa,b, Mohamed El-Hadi Samara, Hocine Bendjamac

aDepartment of Process Engineering, University Badji-Mokhtar of Annaba, Annaba, Algeria
Tel. +213 551287948; email: ca.bouasla@yahoo.fr
bMicroelectronic and Nanotechnology, Centre for Development of Advanced Technologies, Alger, Algeria
cIron and Steel Applied Research Unit, URASM/CSC; P.O. Box 196, Annaba, Algeria

ABSTRACT
In the present work, the degradation of azo dye Naphtol Blue Black (NBB) in aqueous solution by electro-Fenton process was investigated. The results indicated that the degradation of NBB by electro-Fenton process followed the second-order reaction kinetics. The experimental results were also modeled by artificial neural network (ANN) with mean squared error of 10^{-5}. This model was developed in Matlab using a feed forward back propagation network; multilayered perceptron. The input variables to the feed-forward neural network were as follows: initial Fe3+ concentration, initial pH, concentration of Na\textsubscript{2}SO\textsubscript{4}, temperature, applied current, and initial dye concentration. The degradation efficiency and rate constant were chosen as the experimental responses or output variables. The findings indicated that ANN provided reasonable predictive performance ($R^2 > 0.99$). Effects of additives such as anions, metal ions, and organic compound on the efficiency and on the rate constant of NBB degradation were also studied under optimum conditions.

Keywords: Degradation; Electro-Fenton; Naphtol Blue Black; Artificial neural network