Article

Damage modelling in thermoplastic composites reinforced with natural fibres under compressive loading

Ahcene Mokhtari¹,², Mohand Ould Ouali² and Nacer Tala-Ighil¹

Abstract
In this work, the compression failure of thermoplastic composites made of jute/polypropylene is investigated by experimental and numerical studies. Two laminate specimen’s lengths with different fibre orientations have been considered to analyse this composite type response to a compressive solicitation. The applied numerical model permits to understand the mechanisms of damage and evolution in the laminate. The interlayer damage (delamination) and the intra-layer damage (matrix cracking) have been modelled by the combined use of the Cohesive Zones model (CZM) and the Matzenmiller, Lubliner and Taylor (MLT) mechanical model. It was found that the loading conditions of laminates and the fibres orientation affect the compression failure load of the thermoplastic composites.

Keywords
Jute/polypropylene, mechanical behaviour, damage, laminates, modelling

Introduction
Nowadays, the use of bast fibres in polymer matrix composites is increasingly replacing the conventional inorganic fibres. Particularly, natural fibre-reinforced thermoplastics have shown high potential in many industrial applications, owing to their natural fibres’ biodegradability, low cost, light weight and high specific strength compared to inorganic fibres. Thermoplastic composites are selected for environmentally benign applications (Benatar and Gutowski, 1986; Stokes, 1989; Todd, 1990; Wedgewood, 1996). The most important part of plant fibres, which are used as reinforcement for composite materials is bast fibres, such as jute, hemp and flax (Mokhtari and Ould Ouali, 2013;