Predictive Control of Power Electronics Converters in Wind Energy Systems

Badreddine BABES, Rachid AMRAOUI, Amar BOUTAGHANE, Amar Bouafassa and Mohamed Mezaache

Abstract: In order to make a wind power generation truly cost effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy using Model Predictive Control (MPC) approach for permanent magnet synchronous generator based wind turbine system. The proposed control law is based on two points: MPC-based torque current control loop for the generator-side converter to reach the maximum power point of the wind turbine, and MPC-based current control loop for the grid-side converter to satisfy the grid code and to help improve system stability. A small-scale wind turbine system prototype was built and tested in the laboratory, and the experimental results are provided to verify the validity of the developed control methods, MPPT algorithm and performance of the system operations.

Keywords: finite-set model predictive control (FSMPC), Permanent Magnet Synchronous Generator (PMSG), Wind Energy Conversion System (WECS), Maximum Power Point Tracking (MPPT) Control, Grid Connected, experimental validation