Modeling of Electromagnetic Behavior of Composite Thin Layers using Genetic Algorithm

Abdelmalek REDDAF, Karim FERROUDJI, Mounir BOUDJERDA, Khaled Hamdi Chérif, Isslam Bouchachi, fatima Djerfaf

Abstract: In this paper, we present a new model using the high-frequency electromagnetic simulator for several binary mixtures where the load is in the lossless thin film form with a permittivity of $\varepsilon = 100, 200, 300, \text{ and } 400$ and for various thickness values in a range of 10 µm to 250 µm with respect to the host matrix. The model operates in a variety of frequencies from 8.2 GHz to 12.4 GHz. The effective permittivity of composites is evaluated using Nicholson Ross Weir (NRW) algorithm in a rectangular waveguide. The implementation of NRW algorithm is conducted on various samples simulated by HFSS, in order to estimate the dielectric composite behavior. Furthermore, we employ a genetic algorithm methodology (GA) for the filling factor optimization of the proposed model by Mosallaei. The obtained results show a good agreement with the theoretical models, which ensure the validity of our proposed model for characterizing the electromagnetic behavior of dielectric thin films.

Keywords: Thin films, electromagnetic behavior, dielectric mixtures, Genetic optimization, microwave.