Structural modification and magnetic properties enhancement with Er³⁺, of sol-gel TiO₂ thin films

DEHDOUH Heider, BENSAHA Rabah, ZERGOUG Mourad

Abstract : Nano-crystalline un-doped and erbium doped TiO₂ thin ?lms were dip-coated on glass substrates by sol-gel method. The films were annealed at 450 °C during 1 hour. DSC results show that the crystallization effectuates at 339°C for un-doped TiO₂, whereas for erbium doped TiO₂ the crystallization occurs earlier with two separated exothermic. XRD diagrams illustrate that un-doped and erbium doped TiO₂ crystallize in anatase phase only and indicate that the crystallite size decreases from 24 to 21 nm as a function of the increase in Er³⁺ content. This result is confirmed by Raman spectra. Moreover, the VSM results indicate, on one hand, a ferromagnetic behaviour of the un-doped TiO₂. On the other hand, the incorporation of Erbium leads to an enhancement of the ferromagnetic behaviour. It is worthy to mention that the weak Er³⁺ doping (0.1 at.%) is the high ordered magnetically with highest saturation magnetization of 1.92 memu. Both elaborated TiO₂ and Er:TiO₂ films show good structural properties and have a diluted magnetic semiconductors structure. The films are promising for the possible applications in optoelectronic devices.

Keywords: TiO2 doped Er3+, Structural properties, sol-gel, Magnetic Properties, oxygen vacancies.