Chercheur

Teachers Login Form

 

Admin

Pupils Login Form

 



RECONSTRUCTION D’IMAGES TOMOGRAPHIQUES 2 D PAR LA METHODE DE GRADIENT CONJUGUE NON LINEAIR

Auteurs : A. ALLAG, M. MANSOUR, R. Draî
Année : 2010
Domaine : Electronique
Type : Communication
Conférence: Conférence Internationale sur le Soudage, le CND et l’Industrie des Métaux, IC-WNDT-MI’10
Résumé en PDF : (résumé en pdf)
Fulltext en PDF : (.pdf)
Mots clés : soudage, cnd, l’Industrie des Métaux

Résumé :

La solution de nombreux problème de reconstruction d’images tomographiques peut être définie comme la minimisation d’un critère pénalisé, qui prend en compte les données observées et les informations préalable sur la solution. La solution ne peut généralement pas s’exprimer sous une forme analytique, alors un algorithme de minimisation doit être implémenté pour retrouver une solution estimée.L’algorithme du gradient conjugue (GC) a pour objet la résolution d’un système linéaire. Cependant, résoudre un système linéaire est équivalent à minimiser un critère quadratique Ainsi, l’algorithme du GC peut être vu comme minimisant une fonctionnelle quadratique. Ce constat avais permis d’envisager l’utilisation de l’algorithme GC pour des critères non quadratiques. On parle alors d’algorithmes GC non linéaires (GCNL). Les méthodes du gradientconjugue non linéaire (GCNL) sont des algorithmes d’optimisation pour les critères différentiables qui se caractérisent par un faible encombrement mémoire. Il existe de nombreux algorithmes GCNL, dans ce travail nous avons utilisé les plus connus, il s’agit de l’algorithme GCNL avec la forme de FletcherReeves et celui avec la forme de Polak-Ribiere